Set Theory vs. Topology

Foundations of Arithmetic \& non-Archimedean Geometry

Ming Ng
m.ng@qmul.ac.uk

What this talk is about

What is a space? The classical answer is given by point-set topology, and this has had a foundational influence on how we formulate key ideas in many areas of maths.

This talk will introduce some unique perspectives from point-free topology, and illustrate its differences with point-set topology by drawing upon two examples from recent work, partially joint w/ Steve Vickers: one relating to Berkovich geometry, the other relating to arithmetic geometry.

What this talk is about

What is a space? The classical answer is given by point-set topology, and this has had a foundational influence on how we formulate key ideas in many areas of maths.

This talk will introduce some unique perspectives from point-free topology, and illustrate its differences with point-set topology by drawing upon two examples from recent work, partially joint w/ Steve Vickers: one relating to Berkovich geometry, the other relating to arithmetic geometry.

Both results are surprising in different ways, but they highlight subtle interactions between topology \& algebra that were previously obscured by the underlying set theory.

Foundations in Berkovich Geometry

Berkovich Spaces

Let $(K,|\cdot|)$ be a complete valued field, and $K[T]$ be the polynomial ring.

Multiplicative Seminorm

A multiplicative seminorm on D extending the norm of K is a map

$$
|\cdot|_{x}: K[T] \rightarrow \mathbb{R}_{\geq 0}
$$

satisfying the following:

- $|f+g|_{x} \leq|f|_{x}+|g|_{x} \quad \forall, f, g \in K[T]$
- $|f g|_{x}=|f|_{x}|g|_{x} \quad \forall, f, g \in K[T]$
- $|a|_{x}=|a| \quad \forall a \in K$

Berkovich Spaces

Let $(K,|\cdot|)$ be a complete valued field, and $K[T]$ be the polynomial ring.

Berkovich Affine Line

The Berkovich Affine Line $\mathbb{A}_{\text {Berk }}^{1}$ is a space defined as follows:

- Underlying set of $\mathbb{A}_{\text {Berk }}^{1}=$ set of multiplicative seminorms on $K[T]$.
- Topology of $\mathbb{A}_{\text {Berk }}^{1}=$ the Gel'fand topology, i.e. weakest topology such that all maps of the form

$$
\begin{aligned}
& \psi_{f}: \mathbb{A}_{\text {Berk }}^{1} \longrightarrow \mathbb{R}_{\geq 0} \\
&|\cdot|_{x} \longmapsto|f|_{x}
\end{aligned}
$$

are continuous, for any $f \in K[T]$.

Berkovich Spaces

Let $(K,|\cdot|)$ be a complete valued field, and $K[T]$ be the polynomial ring.

Berkovich Affine Line

The Berkovich Affine Line $\mathbb{A}_{\text {Berk }}^{1}$ is a space defined as follows:

- Underlying set of $\mathbb{A}_{\text {Berk }}^{1}$ set of multiplicative seminorms on $K[T]$.
- Topology of $\mathbb{A}_{\text {Berk }}^{1}=$ the Gel'fand topology, i.e. weakest topology such that all maps of the form

$$
\begin{aligned}
& \psi_{f}: \mathbb{A}_{\text {Berk }}^{1} \longrightarrow \mathbb{R}_{\geq 0} \\
&|\cdot|_{x} \longmapsto|f|_{x}
\end{aligned}
$$

are continuous, for any $f \in K[T]$.

Classifying Points of Berkovich spaces

Let $(K,|\cdot|)$ be a complete non-Archimedean valued field that is algebraically closed. A rigid disc is a subset $D_{r}(k) \subset K$ of the form

$$
D_{r}(k):=\{b \in K| | b-k \mid \leq r\} .
$$

Classifying Points of Berkovich spaces

Let $(K,|\cdot|)$ be a complete non-Archimedean valued field that is algebraically closed. A rigid disc is a subset $D_{r}(k) \subset K$ of the form

$$
D_{r}(k):=\{b \in K| | b-k \mid \leq r\} .
$$

Berkovich's Classification Theorem

Suppose K is non-trivially valued. Then every point $|\cdot|_{x} \in \mathbb{A}_{\text {Berk }}^{1}$ corresponds to a nested descending sequence of discs

$$
\begin{equation*}
D_{r_{1}}\left(k_{1}\right) \supseteq D_{r_{2}}\left(k_{2}\right) \supseteq \ldots \tag{1}
\end{equation*}
$$

in the sense that

$$
\begin{equation*}
|\cdot|_{x}=\lim _{n \rightarrow \infty}|\cdot|_{D_{r_{i}}\left(k_{i}\right)} \tag{2}
\end{equation*}
$$

where $|\cdot|_{D_{r}(k)}$ is the multiplicative seminorm canonically associated to $D_{r}(k)$.

Classifying Points of Berkovich spaces

The same construction and result holds for other rings as well. Here's another important example:

- Let $(K,|\cdot|)$ be a complete non-Arch. field that is algebraically closed.
- Denote $\mathcal{A}:=K\left\{R^{-1} T\right\}$ to be ring of power series converging in radius R.
- Denote $\mathcal{M}(\mathcal{A})$ to be the analogous space of multiplicative seminorms on \mathcal{A}.

Classifying Points of Berkovich spaces

The same construction and result holds for other rings as well. Here's another important example:

- Let $(K,|\cdot|)$ be a complete non-Arch. field that is algebraically closed.
- Denote $\mathcal{A}:=K\left\{R^{-1} T\right\}$ to be ring of power series converging in radius R.
- Denote $\mathcal{M}(\mathcal{A})$ to be the analogous space of multiplicative seminorms on \mathcal{A}.

Berkovich's Classification Theorem

Suppose K is non-trivially valued. Then, every point $|\cdot|_{x} \in \mathcal{M}(\mathcal{A})$ is approximated by a nested descending sequence of discs

$$
\begin{equation*}
D_{r_{1}}\left(k_{1}\right) \supseteq D_{r_{2}}\left(k_{2}\right) \supseteq \ldots \tag{3}
\end{equation*}
$$

in the same sense as before.

On the hypothesis of "non-trivially valued"

The space of multiplicative seminorms is still well-defined even when K is trivially valued. ${ }^{1}$

[^0]
On the hypothesis of "non-trivially valued"

The space of multiplicative seminorms is still well-defined even when K is trivially valued. ${ }^{1}$ In fact, Berkovich [Ber90] gives an explicit description of these spaces, depending on whether the radius of convergence $R<1$ or $R \geq 1$.

[^1]
On the hypothesis of "non-trivially valued"

Question: So why assume K to be non-trivially valued?

On the hypothesis of "non-trivially valued"

Question: So why assume K to be non-trivially valued?

リノ The second assumption [that K is non-trivially valued] is necessary [...] if the norm on K is trivial, then there are too few discs.

- Jonsson [Jon15]

Perspective from Point-free Topology

Let us redefine the notion of rigid discs:

Formal Ball

Denote:

- $K_{R}:=\{k \in K| | k \mid \leq R\}$ for some positive real $R>0$
- Q_{+}to be the set of positive rationals.

A formal ball is an element $(k, q) \in K_{R} \times Q_{+}$. We shall represent this more suggestively as $B_{q}(k)$. In particular, we write:

$$
B_{q^{\prime}}\left(k^{\prime}\right) \subseteq B_{q}(k) \text { just in case }\left|k-k^{\prime}\right|<q \wedge q^{\prime} \leq q
$$

Perspective from Point-free Topology

Let us redefine the notion of rigid discs:

Formal Ball

Denote:

- $K_{R}:=\{k \in K| | k \mid \leq R\}$ for some positive real $R>0$
- Q_{+}to be the set of positive rationals.

A formal ball is an element $(k, q) \in K_{R} \times Q_{+}$. We shall represent this more suggestively as $B_{q}(k)$. In particular, we write:

$$
B_{q^{\prime}}\left(k^{\prime}\right) \subseteq B_{q}(k) \text { just in case }\left|k-k^{\prime}\right|<q \wedge q^{\prime} \leq q
$$

Key Observation \#1: Unlike rigid discs, the radius of formal balls are well-defined, i.e. $B_{q^{\prime}}(k)=B_{q}\left(k^{\prime}\right)$ implies $q^{\prime}=q$.

Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter

A filter \mathcal{F} of formal balls is an inhabited subset of $K_{R} \times Q_{+}$that is:

- Upward closed w.r.t \subseteq
- Closed under pairwise intersections.

Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter

A filter \mathcal{F} of formal balls is an inhabited subset of $K_{R} \times Q_{+}$that is:

- Upward closed w.r.t \subseteq
- Closed under pairwise intersections.

We call \mathcal{F} an R-good filter if it also satisfies:

- For any $k \in K_{R}$, and $q \in Q_{+}$such that $R<q, B_{q}(k) \in \mathcal{F}$.
- If $B_{q}(k) \in \mathcal{F}$, there exists $B_{q^{\prime}}\left(k^{\prime}\right) \in \mathcal{F}$ such that $q^{\prime}<q$.

Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter

A filter \mathcal{F} of formal balls is an inhabited subset of $K_{R} \times Q_{+}$that is:

- Upward closed w.r.t \subseteq
- Closed under pairwise intersections.

We call \mathcal{F} an R-good filter if it also satisfies:

- For any $k \in K_{R}$, and $q \in Q_{+}$such that $R<q, B_{q}(k) \in \mathcal{F}$.
- If $B_{q}(k) \in \mathcal{F}$, there exists $B_{q^{\prime}}\left(k^{\prime}\right) \in \mathcal{F}$ such that $q^{\prime}<q$.

Key Observation \#2: Given an R-good filter \mathcal{F}, define $\operatorname{rad}_{\mathcal{F}}:=\inf \left\{q \mid B_{q}(k) \in \mathcal{F}\right\}$ to be its radius. Notice $0 \leq \operatorname{rad}_{\mathcal{F}} \leq R$.

A Sharper Classification Theorem

Theorem (N.)

Setup:

- $(K,|\cdot|)$ is a complete non-Arch field that is algebraically closed - in particular, we allow K to be trivially-valued.
- $\mathcal{A}:=K\left\{R^{-1} T\right\}$ is the ring of power series converging on radius R, and $\mathcal{M}(\mathcal{A})$ is the associated space of multiplicative seminorms.

Then, the space of R-good filters is (classically) equivalent to $\mathcal{M}(\mathcal{A})$.

A Sharper Classification Theorem

Theorem (N.)

Setup:

- $(K,|\cdot|)$ is a complete non-Arch field that is algebraically closed - in particular, we allow K to be trivially-valued.
- $\mathcal{A}:=K\left\{R^{-1} T\right\}$ is the ring of power series converging on radius R, and $\mathcal{M}(\mathcal{A})$ is the associated space of multiplicative seminorms.

Then, the space of R-good filters is (classically) equivalent to $\mathcal{M}(\mathcal{A})$.

Slogan: The algebraic hypothesis of being non-trivially valued is in fact a point-set hypothesis.

New Methods \& Old Friends

We can now give new (and shorter) proofs of familiar charaterisations of Berkovich spectra:

Figure 1: LHS: $\mathcal{M}(\mathcal{A})$ when $R<1, \quad$ RHS: $\mathcal{M}(\mathcal{A})$ when $R \geq 1$.

How did we get here?

In principle, this result could have been discovered much sooner - and yet it wasn't.

The reason seems to be that the result belongs to the point-free perspective in an essential way:

How did we get here?

In principle, this result could have been discovered much sooner - and yet it wasn't.

The reason seems to be that the result belongs to the point-free perspective in an essential way:

- The language of formal balls reflect the localic perspective that it is the opens that are the basic units for defining a space, not the underlying set of points.

How did we get here?

In principle, this result could have been discovered much sooner - and yet it wasn't.

The reason seems to be that the result belongs to the point-free perspective in an essential way:

- The language of formal balls reflect the localic perspective that it is the opens that are the basic units for defining a space, not the underlying set of points.
- A topos can be regarded as a generalised space whose points are models of a geometric theory.

How did we get here?

In principle, this result could have been discovered much sooner - and yet it wasn't.

The reason seems to be that the result belongs to the point-free perspective in an essential way:

- The language of formal balls reflect the localic perspective that it is the opens that are the basic units for defining a space, not the underlying set of points.
- A topos can be regarded as a generalised space whose points are models of a geometric theory. In particular, if the theory of multiplicative seminorms is essentially propositional, then we know the models also correspond to completely prime filters.

The View from Topos Theory

On Logic \＆Topology

リノ Model theory rarely deals directly with topology；the great exception is the theory of o－minimal structures， where the topology arises naturally from an ordered structure．
－E．Hrushovski and F．Loeser［HL16］

リノ While geometric logic can be treated as just another logic，it is an unusual one．［．．．］To put it another way， the geometric mathematics has an intrinsic continuity． －S．Vickers［Vic14］

What is a space?

Point-set Topology

- Point $=$ An element of a set
- Space $=$ A set of points, along with a collection of opens satisfying specific properties ("topology").

Point-free Topology

- Point = A model of a geometric theory
- Space $=$ The 'World' in which all models of the theory live (\approx a topos)

What is a space?

Point-set Topology

- Point $=$ Element of a set
- Space $=$ A set of points, along with a collection of opens satisfying specific properties.

Point-free Topology

- Point $=$ A model of a geometric theory
- Space $=$ The 'World' in which all models of the theory live (\approx a topos)

Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

- Formula: Let \vec{x} be a finite vector of variables, each with a given sort. A geometric formula in context \vec{x} is a formula built up using symbols from Σ via the following logical connectives: $=, \top$ (true), \wedge (finite conjunction), \vee (arbitrary disjunction), \exists.

Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

- Formula: Let \vec{x} be a finite vector of variables, each with a given sort. A geometric formula in context \vec{x} is a formula built up using symbols from Σ via the following logical connectives: $=, \top$ (true), \wedge (finite conjunction), \vee (arbitrary disjunction), \exists.
- Theory: A geometric theory over Σ is a set of axioms of the form

$$
\forall \vec{x} .(\phi \rightarrow \psi)
$$

where ϕ and ψ are geometric formulae.

Differences with classical logic

- Absence of negation \neg
- Allows for arbitrary (possibly infinite) disjunction

Link with Topology

Special case: Propositional Theory

Suppose Σ is just a set of propositional symbols (in particular, no sorts).

- Geometric formulae are constructed from these symbols using T, \wedge, \bigvee.
- A geometric theory over Σ is a set of axioms of the form $\phi \rightarrow \psi$.

Localic Space

Recall the following perspective from point-free topology.

- Point $=$ A model of a geometric theory
- Space $=$ The 'World' in which all models of the theory live

If the geometric theory is propositional, we call the corresponding space a localic space.

Example: Localic Reals

From a logical POV, what are Dedekind reals?

Example: Localic Reals

From a logical POV, what are Dedekind reals?
Classical (finitary) logic: Dedekind cuts arise as types over the rationals $(\mathbb{Q},<)$ considered as a dense linear order.

Example: Localic Reals

From a logical POV, what are Dedekind reals?
Classical (finitary) logic: Dedekind cuts arise as types over the rationals $(\mathbb{Q},<)$ considered as a dense linear order.
Geometric logic: Dedekind reals arise as models of a geometric theory.

Geometric Theory of Reals

The propositional theory $T_{\mathbb{R}}$ with propositional symbols $P_{q, r}$ (with $q, r \in \mathbb{Q}$, the rationals) and the axioms:

- $P_{q, r} \wedge P_{q^{\prime}, r^{\prime}} \longleftrightarrow \bigvee\left\{P_{s, t} \mid \max \left(q, q^{\prime}\right)<s<t<\min \left(r, r^{\prime}\right)\right\}$
- $T \longrightarrow \bigvee\left\{P_{q-\epsilon, q+\epsilon} \mid q \in \mathbb{Q}\right\}$ for any $0<\epsilon \in \mathbb{Q}$.

Types and Models as Filters

Question: Given a point $x \in X$ in some space X, how does the family of open neighbourhoods containing x look like from its POV?

Types and Models as Filters

Question: Given a point $x \in X$ in some space X, how does the family of open neighbourhoods containing x look like from its POV?

Filter

For I an infinite set, $\mathcal{F} \subset \mathcal{P}(I)$ is a filter on I when:
(i) $A \subseteq B \subseteq I$ and $A \in \mathcal{F}$ implies $B \in \mathcal{F}$.
(ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$
(iii) $I \in \mathcal{F}$.

Types and Models as Filters

Question: Given a point $x \in X$ in some space X, how does the family of open neighbourhoods containing x look like from its POV?

Type: A partial type p over a model M corresponds to a filter on M for the Boolean algebra of M-definable subsets of M. If p is an ultrafilter, then we call p a (complete) type.

Model of (Geometric) Propositional Theory: A propositional theory \mathbb{T} can be associated to its lattice $L_{\mathbb{T}}$ of propositional formulae (modulo provable equality). The models of \mathbb{T} are the completely prime filters of $L_{\mathbb{T}}$.

Types and Models as Filters

Question: Given a point $x \in X$ in some space X, how does the family of open neighbourhoods containing x look like from its POV?

Type: A partial type p over a model M corresponds to a filter on M for the Boolean algebra of M-definable subsets of M. If p is an ultrafilter, then we call p a (complete) type.

Model of (Geometric) Propositional Theory: A propositional theory \mathbb{T} can be associated to its lattice $L_{\mathbb{T}}$ of propositional formulae (modulo provable equality). The models of \mathbb{T} are the completely prime filters of $L_{\mathbb{T}}$.

The Upper Reals

Question: What about prime filters which are not ultrafilters?

The Upper Reals

Question: What about prime filters which are not ultrafilters?

Theory of Upper Reals

Consider a subset $R \subset \mathbb{Q}$. For suggestiveness, write " $R<r$ " whenever $r \in R$. Suppose R is subject to the axiom:

$$
\forall r \in \mathbb{Q} \cdot\left(R<r \longleftrightarrow \exists r^{\prime} \in \mathbb{Q} .\left(R<r^{\prime}\right) \wedge\left(r^{\prime}<r\right)\right)
$$

The Upper Reals

Question: What about prime filters which are not ultrafilters?

Theory of Upper Reals

Consider a subset $R \subset \mathbb{Q}$. For suggestiveness, write " $R<r$ " whenever $r \in R$. Suppose R is subject to the axiom:

$$
\forall r \in \mathbb{Q} \cdot\left(R<r \longleftrightarrow \exists r^{\prime} \in \mathbb{Q} .\left(R<r^{\prime}\right) \wedge\left(r^{\prime}<r\right)\right)
$$

Remark: Morally speaking, an upper real R corresponds to the right Dedekind section of a real.

The Upper Reals

Question: What about prime filters which are not ultrafilters?

Theory of Upper Reals

Consider a subset $R \subset \mathbb{Q}$. For suggestiveness, write " $R<r$ " whenever $r \in R$. Suppose R is subject to the axiom:

$$
\forall r \in \mathbb{Q} \cdot\left(R<r \longleftrightarrow \exists r^{\prime} \in \mathbb{Q} \cdot\left(R<r^{\prime}\right) \wedge\left(r^{\prime}<r\right)\right)
$$

Remark: Morally speaking, an upper real R corresponds to the right Dedekind section of a real. More precisely, upper reals are classically equivalent the the usual Dedekind reals ${ }^{2}$, but intuitionistically they are different.

[^2]
The Abstract vs. The Concrete

リノ Category Theory is directed at the removal of the importance of a concrete construction. It provides a language to compare different concrecte constructions and in addition provides a very new way to construct objects [...] On the other hand, Model theory is concentrated on the gap between an abstract definition and a concrete construction.

- David Kazhdan [Kaz06]

The Abstract vs. The Concrete

Point-free space $=$ The 'World' in which all models of the theory live (\approx a topos)

Given a theory \mathbb{T} over signature Σ, what are its models really?

The Abstract vs. The Concrete

Point-free space $=$ The 'World' in which all models of the theory live (\approx a topos)

Given a theory \mathbb{T} over signature Σ, what are its models really?
Model Theory. A set M, equipped with interpretations of symbols in Σ. E.g. for an n-ary relation $R \in \Sigma$, the model defines a subset

$$
R_{M} \subseteq M^{n_{R}} .
$$

The Abstract vs. The Concrete

Point-free space $=$ The 'World' in which all models of the theory live (\approx a topos)

Given a theory \mathbb{T} over signature Σ, what are its models really?
Model Theory. A set M, equipped with interpretations of symbols in Σ. E.g. for an n-ary relation $R \in \Sigma$, the model defines a subset

$$
R_{M} \subseteq M^{n_{R}} .
$$

Topos Theory. An object in a category (with formal properties similar to Set) ${ }^{3}$, also equipped with interpretations of Σ.
${ }^{3}$ More precisely, a category satisfying Giraud's axioms, i.e. a topos.

The Abstract vs. The Concrete

Point-free space $=$ The 'World' in which all models of the theory live (\approx a topos)

Given a theory \mathbb{T} over signature Σ, what are its models really?
Model Theory. A set M, equipped with interpretations of symbols in Σ. E.g. for an n-ary relation $R \in \Sigma$, the model defines a subset

$$
R_{M} \subseteq M^{n_{R}} .
$$

Topos Theory. An object in a category (with formal properties similar to Set), also equipped with interpretations of Σ. E.g. for an n-ary relation R on sorts $A_{1} \times \cdots \times A_{m}$, a model defines a subobject

$$
[[R]]_{M} \mapsto\left[\left[A_{1}\right]\right]_{M} \times \cdots \times\left[\left[A_{m}\right]\right]_{M}
$$

The Abstract vs. The Concrete

Point-free space $=$ The 'World' in which all models of the theory live (\approx a topos)

Given a theory \mathbb{T} over signature Σ, what are its models really?
Model Theory. Models come from sets.
Topos Theory. Models come from the category Set, but also other categories capable of interpreting logic ...

The Abstract vs. The Concrete

Point-free space $=$ The 'World' in which all models of the theory live (\approx a topos)

Given a theory \mathbb{T} over signature Σ, what are its models really?
Model Theory. Models come from sets.
Topos Theory. Models come from the category Set, but also other categories capable of interpreting logicnecessary to consider a wider range of models, because geometric logic is incomplete (unlike classical logic).

The Generic Model

In topos theory, we have access to a \mathbb{T}-model that generally does not live in Set:

Key Theorem

Given any geometric theory \mathbb{T}, there exists a generic model $G_{\mathbb{T}}$ from which all other \mathbb{T}-models can be obtained. It is generic in that it has no other properties other than the logical consequences of its being a model.

The Generic Model

In topos theory, we have access to a \mathbb{T}-model that generally does not live in Set:

Key Theorem

Given any geometric theory \mathbb{T}, there exists a generic model $G_{\mathbb{T}}$ from which all other \mathbb{T}-models can be obtained. In particular:

- $G_{\mathbb{T}}$ is conservative, i.e. for any geometric sequent σ

$$
\forall \vec{x} .(\phi \longrightarrow \psi),
$$

σ holds for $G_{\mathbb{T}}$ iff σ holds for any \mathbb{T}-model.

- Any geometric construction (= built out of arbitrary colimits and finite limits) can be carried out for any specific \mathbb{T}-model.

Continuous Maps in Point-free Topology

Here's how we can use the generic model:

- Let \mathbb{T} and \mathbb{T}^{\prime} be two geometric theories. Denote $[\mathbb{T}]$ and $\left[\mathbb{T}^{\prime}\right]$ to be their corresponding spaces of models.

Continuous Maps in Point-free Topology

Here's how we can use the generic model:

- Let \mathbb{T} and \mathbb{T}^{\prime} be two geometric theories. Denote $[\mathbb{T}]$ and $\left[\mathbb{T}^{\prime}\right]$ to be their corresponding spaces of models.
- We know there exists a generic model $G_{\mathbb{T}} \in[\mathbb{T}]$.

Continuous Maps in Point-free Topology

Here's how we can use the generic model:

- Let \mathbb{T} and \mathbb{T}^{\prime} be two geometric theories. Denote $[\mathbb{T}]$ and $\left[\mathbb{T}^{\prime}\right]$ to be their corresponding spaces of models.
- We know there exists a generic model $G_{\mathbb{T}} \in[\mathbb{T}]$.
- Suppose we are able to transform $G_{\mathbb{T}}$ into a model of \mathbb{T}^{\prime} geometrically (= using finite limits \& arbitrary colimits), which we denote $f\left(G_{\mathbb{T}}\right)$. Notice: if $f\left(G_{\mathbb{T}}\right)$ is a \mathbb{T}^{\prime} model, then $f\left(G_{\mathbb{T}}\right) \in\left[\mathbb{T}^{\prime}\right]$.

Continuous Maps in Point-free Topology

Here's how we can use the generic model:

- Let \mathbb{T} and \mathbb{T}^{\prime} be two geometric theories. Denote $[\mathbb{T}]$ and $\left[\mathbb{T}^{\prime}\right]$ to be their corresponding spaces of models.
- We know there exists a generic model $G_{\mathbb{T}} \in[\mathbb{T}]$.
- Suppose we are able to transform $G_{\mathbb{T}}$ into a model of \mathbb{T}^{\prime} geometrically (= using finite limits \& arbitrary colimits), which we denote $f\left(G_{\mathbb{T}}\right)$. Notice: if $f\left(G_{\mathbb{T}}\right)$ is a \mathbb{T}^{\prime} model, then $f\left(G_{\mathbb{T}}\right) \in\left[\mathbb{T}^{\prime}\right]$.
- The same construction $f(-)$ extends to all other \mathbb{T}-models, and so what we have done is define a map

$$
\begin{aligned}
f:[\mathbb{T}] & \longrightarrow\left[\mathbb{T}^{\prime}\right] \\
G_{\mathbb{T}} & \longmapsto f\left(G_{\mathbb{T}}\right)
\end{aligned}
$$

where $G_{\mathbb{T}}$ plays the role of the formal parameter.

Continuous Maps in Point-free Topology

Here's how we can use the generic model:

Example

Let $\mathbb{T}_{\mathbb{R}}$ be the theory of Dedekind reals, and denote \mathbb{R} to be the space of reals, and $x \in \mathbb{R}$ to be the generic real. We can define:

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{2}
\end{aligned}
$$

Notice: No explicit continuity proof of this map is required - as long as we adhere to geometric constraints, we forgo the ability to define discontinuous maps. For a more detailed discussion, see [Vic22].

Continuous Maps in Point-free Topology

Here's how we can use the generic model:

Example

Let $\mathbb{T}_{\mathbb{R}}$ be the theory of Dedekind reals, and denote \mathbb{R} to be the space of reals, and $x \in \mathbb{R}$ to be the generic real. We can define:

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto x^{2}
\end{aligned}
$$

Notice: No explicit continuity proof of this map is required - as long as we adhere to geometric constraints, we forgo the ability to define discontinuous maps. For a more detailed discussion, see [Vic22].

Bird's Eye View

	Point-Set Topology	Point-free Topology
Point	Element of a set	Model of a theory \mathbb{T}
Space	Set + Topology	Universe of all \mathbb{T}-models
Continuous Maps	$f: X \rightarrow Y$ s.t.	Geom. transformation of generic model $G_{\mathbb{T}}$

Adelic Geometry via Topos Theory

Divide and Conquer

$$
X^{n}+Y^{n}+Z^{n}=0 \quad(n>2)
$$

Divide and Conquer

$$
X^{n}+Y^{n}+Z^{n}=0 \quad(n>2)
$$

- Question: What are the rational (equiv. integer) solutions to this polynomial?

Divide and Conquer

$$
X^{n}+Y^{n}+Z^{n}=0 \quad(n>2)
$$

- Question: What are the rational (equiv. integer) solutions to this polynomial? hard!

Divide and Conquer

$$
X^{n}+Y^{n}+Z^{n}=0 \quad(n>2)
$$

- Question: What are the rational (equiv. integer) solutions to this polynomial? hard!
- Observation \#1: Integer solutions imply real and modulo p solutions (in fact p-adic solutions).

Divide and Conquer

$$
X^{n}+Y^{n}+Z^{n}=0 \quad(n>2)
$$

- Question: What are the rational (equiv. integer) solutions to this polynomial? hard!
- Observation \#1: Integer solutions imply real and modulo p solutions (in fact p-adic solutions).
- Observation \#2: Real and p-adic solutions are easier to deal with than just integer/rational solutions.

Divide and Conquer

$$
X^{n}+Y^{n}+Z^{n}=0 \quad(n>2)
$$

- Question: What are the rational (equiv. integer) solutions to this polynomial? hard!
- Observation \#1: Integer solutions imply real and modulo p solutions (in fact p-adic solutions).
- Observation \#2: Real and p-adic solutions are easier to deal with than just integer/rational solutions.
- New Question: Given a polynomial with \mathbb{Q}-coefficients, when does knowledge about its \mathbb{Q}_{p} and \mathbb{R}-solutions give us info about its \mathbb{Q}-solutions?

Hasse's Local-Global Principle

Local-Global Principle for \mathbb{Q}

Some property P is true for \mathbb{Q} iff P is true for all the completions of \mathbb{Q}.

[^3]
Hasse's Local-Global Principle

Local-Global Principle for \mathbb{Q}

Some property P is true for \mathbb{Q} iff P is true for all the completions of \mathbb{Q}.

Question: When does this principle hold? -

[^4]
Hasse's Local-Global Principle

Local-Global Principle for \mathbb{Q}

Some property P is true for \mathbb{Q} iff P is true for all the completions of \mathbb{Q}.

Question: When does this principle hold? - sometimes.

[^5]
Hasse's Local-Global Principle

Local-Global Principle for \mathbb{Q}

Some property P is true for \mathbb{Q} iff P is true for all the completions of \mathbb{Q}.
Question: When does this principle hold? - sometimes.
Hasse-Minkowski Theorem: Quadratic forms ${ }^{3}$ have \mathbb{Q}-solutions iff they have solutions over all completions of \mathbb{Q}.
Counter-Examples:

- Lind-Reichardt: $2 Y^{2}=X^{4}-17 Z^{4}$
- Selmer: $3 X^{3}+4 Y^{3}+5 Z^{3}=0$

[^6]
Hasse's Local-Global Principle

Local-Global Principle for \mathbb{Q}

Some property P is true for \mathbb{Q} iff P is true for all the completions of \mathbb{Q}.

Still, it would be helpful to find a way of reasoning about properties that hold for all completions of \mathbb{Q}.

Classical Number Theory: Reason about completions via the adele ring

$$
\mathbb{A}_{\mathbb{Q}}:=\mathbb{Q} \otimes_{\mathbb{Z}}\left(\mathbb{R} \times \prod_{p} \mathbb{Z}_{p}\right)
$$

Hasse's Local-Global Principle

Local-Global Principle for \mathbb{Q}

Some property P is true for \mathbb{Q} iff P is true for all the completions of \mathbb{Q}.

Still, it would be helpful to find a way of reasoning about properties that hold for all completions of \mathbb{Q}.

Classical Number Theory: Reason about completions via the adele ring

$$
\mathbb{A}_{\mathbb{Q}}:=\mathbb{Q} \otimes_{\mathbb{Z}}\left(\mathbb{R} \times \prod_{p} \mathbb{Z}_{p}\right)
$$

Point-Free Topology: Does there exist a geometric theory of completions of \mathbb{Q} ? If yes, then there exists a generic completion which we can reason with.

Yet more foundational issues

When we say a property holds for all completions of \mathbb{Q}, we really mean true for all (non-trivial) completions of \mathbb{Q} up to topological equivalence.

Places

A place is an equivalence class of absolute values whereby $|\cdot|_{1} \sim|\cdot|_{2}$ if there exists some $\alpha \in(0,1]$ such that $|\cdot|_{1}=|\cdot|_{2}^{\alpha}$ or $|\cdot|_{2}=|\cdot|_{1}^{\alpha}$.

Yet more foundational issues

When we say a property holds for all completions of \mathbb{Q}, we really mean true for all (non-trivial) completions of \mathbb{Q} up to topological equivalence.

Places

A place is an equivalence class of absolute values whereby $|\cdot|_{1} \sim|\cdot|_{2}$ if there exists some $\alpha \in(0,1]$ such that $|\cdot|_{1}=|\cdot|_{2}^{\alpha}$ or $|\cdot|_{2}=|\cdot|_{1}^{\alpha}$.

In particular, if $|\cdot|_{1},|\cdot|_{2}$ belong to the same place, then their respective completions of \mathbb{Q} are equivalent.

Yet more foundational issues ...

Question: How should we think of the space of places of \mathbb{Q} ?

Ostrowski's Theorem for \mathbb{Q}

Every absolute value of \mathbb{Q} is equivalent to a (non-Archimedean) p-adic absolute value $|\cdot|_{p}$ (for some prime p), or the Archimedean absolute value $|\cdot|_{\infty}$.

Yet more foundational issues ...

Question: How should we think of the space of places of \mathbb{Q} ?

Ostrowski's Theorem for \mathbb{Q}

Every absolute value of \mathbb{Q} is equivalent to a (non-Archimedean) p-adic absolute value $|\cdot|_{p}$ (for some prime p), or the Archimedean absolute value $|\cdot|_{\infty}$.

Classical Arakelov Geometry. Following the function field analogy, define the Arakelov compactification of $\operatorname{Spec}(\mathbb{Z})$ as the space of all primes with an additional point at infinity, corresponding to the Archimedean place.

Yet more foundational issues ...

Question: How should we think of the space of places of \mathbb{Q} ?

Ostrowski's Theorem for \mathbb{Q}

Every absolute value of \mathbb{Q} is equivalent to a (non-Archimedean) p-adic absolute value $|\cdot|_{p}$ (for some prime p), or the Archimedean absolute value $|\cdot|_{\infty}$.

Classical Arakelov Geometry. Following the function field analogy, define the Arakelov compactification of $\operatorname{Spec}(\mathbb{Z})$ as the space of all primes with an additional point at infinity, corresponding to the Archimedean place. As a (point-set) space, its points comprises:

- Prime ideals $\mathfrak{p} \in \operatorname{Spec}(\mathbb{Z})$, whereby $\mathfrak{p}=(p)$.
- ∞

Yet more foundational issues ...

Question: How should we think of the space of places of \mathbb{Q} ?

Ostrowski's Theorem for \mathbb{Q}

Every absolute value of \mathbb{Q} is equivalent to a (non-Archimedean) p-adic absolute value $|\cdot|_{p}$ (for some prime p), or the Archimedean absolute value $|\cdot|_{\infty}$.

Classical Arakelov Geometry. Following the function field analogy, define the Arakelov compactification of $\operatorname{Spec}(\mathbb{Z})$ as the space of all primes with an additional point at infinity, corresponding to the Archimedean place. As a (point-set) space, its points comprises:

- Prime ideals $\mathfrak{p} \in \operatorname{Spec}(\mathbb{Z})$, whereby $\mathfrak{p}=(p)$.
- ∞ ?????

The Point-free Perspective

Let's rework this question via point-free topology.

The Point-free Perspective

Let's rework this question via point-free topology.

As long as we are careful to work geometrically, then our point-free spaces will maintain a tight connection with the more category-theoretic aspects from topos theory. This puts at our disposal a deep collection of structure theorems, such as descent, that allows us to extract topological information from our logical setup.

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.
Phrased more categeorically, we can define the space of places as the coequaliser of the diagram

$$
[a v] \times(0,1] \xrightarrow[e x]{\pi}[a v]
$$

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.
Phrased more categeorically, we can define the space of places as the coequaliser of the diagram

$$
[a v] \times(0,1] \xrightarrow[e x]{\pi}[a v]
$$

- [av] is the space of absolute values of \mathbb{Q}
- π is the projection map sending $(|\cdot|, \alpha) \mapsto|\cdot|$
- ex is the exponentiation map sending $(|\cdot|, \alpha) \mapsto|\cdot|^{\alpha}$

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
2. $|\cdot|^{1}=|\cdot|$
3. $\left(|\cdot|^{\alpha}\right)^{\beta}=\left.|\cdot|\right|^{\alpha \cdot \beta}$.
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
2. $|\cdot|^{1}=|\cdot|$
3. $\left(|\cdot|^{\alpha}\right)^{\beta}=|\cdot|^{\alpha \cdot \beta}$.
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.
In essence, we would like to 'quotient' the topos [av] by an algebraic action - two questions:

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
2. $|\cdot|^{1}=|\cdot|$
3. $\left(|\cdot|^{\alpha}\right)^{\beta}=|\cdot|^{\alpha \cdot \beta}$.
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.
In essence, we would like to 'quotient' the topos [av] by an algebraic action - two questions:

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
2. $|\cdot|^{1}=|\cdot|$
3. $\left(|\cdot|^{\alpha}\right)^{\beta}=|\cdot|^{\alpha \cdot \beta}$.
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.
In essence, we would like to 'quotient' the topos [av] by an algebraic action - two questions:

- Is the notion of (real) exponentiation geometric? Ng-Vickers [NV22]

The Space of Places of \mathbb{Q}

Intuitively, what should this space look like?
Its points should correspond to equivalence classes of absolute values, such that:

1. $|\cdot|^{\alpha} \sim|\cdot|$
2. $|\cdot|^{1}=|\cdot|$
3. $\left(|\cdot|^{\alpha}\right)^{\beta}=|\cdot|^{\alpha \cdot \beta}$.
for any absolute value $|\cdot|$, and $\alpha \in(0,1]$.
In essence, we would like to 'quotient' the topos [av] by an algebraic action - two questions:

- Is the notion of (real) exponentiation geometric? Ng-Vickers [NV22]
- What does it mean to quotient a (point-free) space by an algebraic action?

Non-Archimedean Place of \mathbb{Q}

$$
\left[a v_{N A}\right] \times(0, \infty) \underbrace{\leftarrow}_{e x} \text { sav } \underset{N A}{ }] \ldots \mathcal{D}
$$

Non-Archimedean Place of \mathbb{Q}

$$
\left[a v_{N A}\right] \times(0, \infty) \underbrace{\leftarrow}_{e x} \text { sav } \underset{N A}{ }] \ldots \mathcal{D}
$$

Non-Archimedean Place of \mathbb{Q}

- For any non-Arch. absolute $|\cdot|$, exponentiating $|\cdot|^{\alpha}$ still yields a non-Arch. absolute value for any $\alpha \in(0, \infty)$.

Non-Archimedean Place of \mathbb{Q}

- For any non-Arch. absolute $|\cdot|$, exponentiating $|\cdot|^{\alpha}$ still yields a non-Arch. absolute value for any $\alpha \in(0, \infty)$.
- What is \mathcal{D} ?

Theorem (N.-Vickers)

$$
\mathcal{D} \simeq\{*\}
$$

Archimedean Place

$$
\left[a v_{A}\right] \times(\underbrace{\overbrace{s}^{\pi}}_{\mathfrak{m}}\left[a v_{A}\right] \ldots \mathcal{D}^{\prime}
$$

Archimedean Place

- Space of Arch. absolute values is acted upon by a monoid (0,1]-action as opposed to a group $(0, \infty)$-action.

Archimedean Place

- Space of Arch. absolute values is acted upon by a monoid (0,1]-action as opposed to a group $(0, \infty)$-action.
- Can we play the same game as we did in the Non-Archimedean case?

Archimedean Place

- Space of Arch. absolute values is acted upon by a monoid (0,1]-action as opposed to a group $(0, \infty)$-action.
- Can we play the same game as we did in the Non-Archimedean case? Answer: No!

Archimedean Place

- Space of Arch. absolute values is acted upon by a monoid (0,1]-action as opposed to a group $(0, \infty)$-action.
- Can we play the same game as we did in the Non-Archimedean case? Answer: No! (The topos corresponding to \mathcal{D}^{\prime} has non-trivial forking in its sheaves)

Archimedean Place

- Space of Arch. absolute values is acted upon by a monoid (0,1]-action as opposed to a group $(0, \infty)$-action.
- Can we play the same game as we did in the Non-Archimedean case? Answer: No! (The topos corresponding to \mathcal{D}^{\prime} has non-trivial forking in its sheaves)
- So what is \mathcal{D}^{\prime} ?

Archimedean Place

Theorem (N.-Vickers)

$\mathcal{D}^{\prime} \simeq[0,1]$, i.e. the space of 'upper reals' between 0 and 1 .

Archimedean Place

Theorem (N.-Vickers)

$\mathcal{D}^{\prime} \simeq \overleftarrow{[0,1]}$, i.e. the space of 'upper reals' between 0 and 1 .

(0)

Discussion: Beauty \& Danger of Analogies

"One weakness in the analogy between the collection of $\left\{K_{s}\right\}_{s \in S}$ for a compact Riemann surface S and the collection $\left\{\mathbb{Q}_{p}\right.$, for prime numbers p, and $\left.\mathbb{R}\right\}$ is that [...] no manner of squinting seems to be able to make \mathbb{R} the least bit mistakeable for any of the p-adic fields, nor are the p-adic fields \mathbb{Q}_{p} isomorphic for distinct p.

A major theme in the development of Number Theory has been to try to bring \mathbb{R} somewhat more into line with the p-adic fields; a major mystery is why \mathbb{R} resists this attempt so strenuously."

- Barry Mazur [Maz93]

Discussion: Connected \& Disconnected

Reorienting our perspective

The issue of how to unite the Archimedean and the non-Archimedean settings is not (just) an algebraic question, but a topological one: how should the connected and the disconnected interact?

Proof of Theorem

Lax Descent Construction. Consider a 2-truncated simplicial topos $\mathcal{E}_{\boldsymbol{\bullet}}$:

We can obtain a category $\operatorname{LDesc}\left(\mathcal{E}_{\bullet}\right)$ as the coinserter for the diagram (subject to the usual descent conditions). Its objects are pairs (F, θ), where:

- F is a sheaf of \mathcal{E}_{0}
- $\theta: d_{0}^{*} F \rightarrow d_{1}^{*} F$ is a morphism in \mathcal{E}_{1} satisfying the unit and cocycle conditions.

Important: Unlike the standard descent topos, no requirement that θ is isomorphism!

Proof of Theorem

Methodological challenge

The descent construction very much regards the topos as a category of objects, rather than a generalised space of models. To reformulate this in the point-free language, we decided to regard the sheaves as étale bundles, which keeps the connection with the point-free perspective.

Proof of Theorem

To prove the theorem, the basic plan of attack is to construct two functors

where \mathcal{D}^{\prime} is the lax descent topos, and prove that they are inverse. The mathematical devil lies in the details.

- \mathfrak{K} is induced by the fact that there exists a natural map from Dedekinds to upper reals defined by forgetting the left Dedekind section.
- \mathfrak{J} is trickier, and involved constructing a technical lifting lemma, and showing that sheaves over $(0,1]$ restricted to the rationals $\mathbb{Q}_{(0,1]}$ (that obey the lax descent conditions) also satisfy the conditions of the lemma.

By way of conclusion

The main thread guiding us was a foundational question on the role of set theory in topology, and its broader effects on the foundations on other areas of mathematics.

By way of conclusion

The main thread guiding us was a foundational question on the role of set theory in topology, and its broader effects on the foundations on other areas of mathematics.

1) Berkovich Geometry: As stated, Berkovich's Classification theorem for $K\left\{R^{-1} T\right\}$ fails for trivially valued K due to essentially point-set reasons.
2) Arithmetic Geometry: Classically, the Archimedean place of \mathbb{Q} is treated as a singleton because of the point-set assumption that points correspond to elements of a set.

By way of conclusion

The main thread guiding us was a foundational question on the role of set theory in topology, and its broader effects on the foundations on other areas of mathematics.

1) Berkovich Geometry: As stated, Berkovich's Classification theorem for $K\left\{R^{-1} T\right\}$ fails for trivially valued K due to essentially point-set reasons.
2) Arithmetic Geometry: Classically, the Archimedean place of \mathbb{Q} is treated as a singleton because of the point-set assumption that points correspond to elements of a set.

In different ways, we used the point-free perspective to pull these problems away from the underlying set theory. Both results indicate a particular loss of information within the classical setting, while also revealing a deep nerve connecting topology \& algebra that had previously been obscured.

References i

國 Vladimir Berkovich.
Spectral Theory and Analytic Geometry over Non-Archimedean Fields.
American Mathematical Society, 1990.
Ehud Hrushovski and François Loeser.
Non-archimedean Tame Topology and Stably Dominated Types.
Princeton University Press, 2016.
Mattias Jonsson.
Berkovich Spaces and Applications, volume 2119 of Lecture Notes in Mathematics, chapter Dynamics on Berkovich Spaces in Low Dimensions, pages 205-366.
Springer, 2015.

References if

堛 David Kazhdan．
Lecture notes in motivic integration．
http：／／www．ma．huji．ac．il／～kazhdan／Notes／motivic／b．pdf， 2006.
國 Barry Mazur．
On the passage from local to global in number theory．
Bulletin of the AMS，29（1）：14－50， 1993.
围 Ming Ng and Steven Vickers．
Point－free construction of real exponentiation．
Logical Methods in Computer Science， 2022.

References iif

嗇 Steven Vickers．
Locales and toposes as spaces．
In M Aiello，I E Pratt－Hartmann，and J F van Benthem，editors，Handbook of Spatial Logics，pages 429－496．Springer， 2007.

图 Steven Vickers．
Continuity and geometric logic．
Journal of Applied Logic，12（1）：14－27， 2014.
堛 Steven Vickers．
Generalized point－free spaces，pointwise． arXiv：2206．01113， 2022.

[^0]: ${ }^{1}$ That is, if $|k|=1$ for all $k \neq 0$ in K.

[^1]: ${ }^{1}$ That is, if $|k|=1$ for all $k \neq 0$ in K.

[^2]: ${ }^{2}$ At least, once we ignore the infinities.

[^3]: $3_{\text {i.e. }}$ homogeneous polynomials of degree 2

[^4]: $3_{\text {i.e. homogeneous polynomials of degree } 2}$

[^5]: $3_{\text {i.e. homogeneous polynomials of degree } 2}$

[^6]: ${ }^{3}$ i.e. homogeneous polynomials of degree 2

