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What this talk is about
What is a space? The classical answer is given by point-set topology, and this has had a
foundational influence on how we formulate key ideas in many areas of maths.

This talk will introduce some unique perspectives from point-free topology, and illustrate its
differences with point-set topology by drawing upon two examples from recent work, partially
joint w/ Steve Vickers: one relating to Berkovich geometry, the other relating to arithmetic
geometry.

Both results are surprising in different ways, but they highlight subtle interactions between

topology & algebra that were previously obscured by the underlying set theory.
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Foundations in Berkovich Geometry



Berkovich Spaces

Let (K , | · |) be a complete valued field, and K [T ] be the polynomial ring.

Multiplicative Seminorm
A multiplicative seminorm on D extending the norm of K is a map

| · |x : K [T ]→ R≥0

satisfying the following:

• |f + g|x ≤ |f |x + |g|x ∀, f , g ∈ K [T ]
• |fg|x = |f |x |g|x ∀, f , g ∈ K [T ]
• |a|x = |a| ∀a ∈ K
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Berkovich Spaces

Let (K , | · |) be a complete valued field, and K [T ] be the polynomial ring.

Berkovich Affine Line
The Berkovich Affine Line A1

Berk is a space defined as follows:

• Underlying set of A1
Berk = set of multiplicative seminorms on K [T ].

• Topology of A1
Berk = the Gel’fand topology, i.e. weakest topology such that

all maps of the form

ψf : A1
Berk −→ R≥0

| · |x 7−→ |f |x

are continuous, for any f ∈ K [T ].
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Classifying Points of Berkovich spaces

Let (K , | · |) be a complete non-Archimedean valued field that is algebraically closed. A
rigid disc is a subset Dr(k) ⊂ K of the form

Dr(k) := {b ∈ K
∣∣ |b− k| ≤ r}.

Berkovich’s Classification Theorem
Suppose K is non-trivially valued. Then every point | · |x ∈ A1

Berk corresponds to
a nested descending sequence of discs

Dr1(k1) ⊇ Dr2(k2) ⊇ ... (1)

in the sense that
| · |x = lim

n→∞
| · |Dri (ki) (2)

where | · |Dr(k) is the multiplicative seminorm canonically associated to Dr(k).
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Classifying Points of Berkovich spaces

The same construction and result holds for other rings as well. Here’s another
important example:

• Let (K , | · |) be a complete non-Arch. field that is algebraically closed.
• Denote A := K{R−1T} to be ring of power series converging in radius R.
• DenoteM(A) to be the analogous space of multiplicative seminorms on A.

Berkovich’s Classification Theorem
Suppose K is non-trivially valued. Then, every point | · |x ∈M(A) is
approximated by a nested descending sequence of discs

Dr1(k1) ⊇ Dr2(k2) ⊇ ... (3)

in the same sense as before.
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On the hypothesis of “non-trivially valued”

The space of multiplicative seminorms is still well-defined even when K is trivially
valued.1

In fact, Berkovich [Ber90] gives an explicit description of these spaces,
depending on whether the radius of convergence R < 1 or R ≥ 1.

1That is, if |k| = 1 for all k ̸= 0 in K .
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On the hypothesis of “non-trivially valued”

Question: So why assume K to be non-trivially valued?
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On the hypothesis of “non-trivially valued”

Question: So why assume K to be non-trivially valued?

” The second assumption [that K is non-trivially valued]
is necessary [...] if the norm on K is trivial, then there
are too few discs.

— Jonsson [Jon15]
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Perspective from Point-free Topology

Let us redefine the notion of rigid discs:

Formal Ball
Denote:

• KR := {k ∈ K | |k| ≤ R} for some positive real R > 0

• Q+ to be the set of positive rationals.

A formal ball is an element (k, q) ∈ KR × Q+. We shall represent this more
suggestively as Bq(k). In particular, we write:

Bq′(k′) ⊆ Bq(k) just in case |k − k′| < q ∧ q′ ≤ q.

Key Observation #1: Unlike rigid discs, the radius of formal balls are well-defined, i.e.
Bq′(k) = Bq(k′) implies q′ = q.
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Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter
A filter F of formal balls is an inhabited subset of KR × Q+ that is:

• Upward closed w.r.t ⊆
• Closed under pairwise intersections.

We call F an R-good filter if it also satisfies:

• For any k ∈ KR, and q ∈ Q+ such that R < q, Bq(k) ∈ F .

• If Bq(k) ∈ F , there exists Bq′(k′) ∈ F such that q′ < q.
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Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter
A filter F of formal balls is an inhabited subset of KR × Q+ that is:

• Upward closed w.r.t ⊆
• Closed under pairwise intersections.

We call F an R-good filter if it also satisfies:

• For any k ∈ KR, and q ∈ Q+ such that R < q, Bq(k) ∈ F .

• If Bq(k) ∈ F , there exists Bq′(k′) ∈ F such that q′ < q.

Key Observation #2: Given an R-good filter F , define radF := inf{q | Bq(k) ∈ F} to
be its radius. Notice 0 ≤ radF ≤ R.
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A Sharper Classification Theorem

Theorem (N.)
Setup:

• (K , | · |) is a complete non-Arch field that is algebraically closed – in
particular, we allow K to be trivially-valued.

• A := K{R−1T} is the ring of power series converging on radius R, and
M(A) is the associated space of multiplicative seminorms.

Then, the space of R-good filters is (classically) equivalent toM(A).

Slogan: The algebraic hypothesis of being non-trivially valued is in fact a point-set
hypothesis.

9



A Sharper Classification Theorem

Theorem (N.)
Setup:

• (K , | · |) is a complete non-Arch field that is algebraically closed – in
particular, we allow K to be trivially-valued.

• A := K{R−1T} is the ring of power series converging on radius R, and
M(A) is the associated space of multiplicative seminorms.

Then, the space of R-good filters is (classically) equivalent toM(A).

Slogan: The algebraic hypothesis of being non-trivially valued is in fact a point-set
hypothesis.

9



New Methods & Old Friends

We can now give new (and shorter) proofs of familiar charaterisations of Berkovich
spectra:

Figure 1: LHS:M(A) when R < 1, RHS:M(A) when R ≥ 1.
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How did we get here?

In principle, this result could have been discovered much sooner — and yet it wasn’t.

The reason seems to be that the result belongs to the point-free perspective in an
essential way:

• The language of formal balls reflect the localic perspective that it is the opens that
are the basic units for defining a space, not the underlying set of points.

• A topos can be regarded as a generalised space whose points are models of a
geometric theory. In particular, if the theory of multiplicative seminorms is
essentially propositional, then we know the models also correspond to completely
prime filters.

11



How did we get here?

In principle, this result could have been discovered much sooner — and yet it wasn’t.

The reason seems to be that the result belongs to the point-free perspective in an
essential way:

• The language of formal balls reflect the localic perspective that it is the opens that
are the basic units for defining a space, not the underlying set of points.

• A topos can be regarded as a generalised space whose points are models of a
geometric theory. In particular, if the theory of multiplicative seminorms is
essentially propositional, then we know the models also correspond to completely
prime filters.

11



How did we get here?

In principle, this result could have been discovered much sooner — and yet it wasn’t.

The reason seems to be that the result belongs to the point-free perspective in an
essential way:

• The language of formal balls reflect the localic perspective that it is the opens that
are the basic units for defining a space, not the underlying set of points.

• A topos can be regarded as a generalised space whose points are models of a
geometric theory.

In particular, if the theory of multiplicative seminorms is
essentially propositional, then we know the models also correspond to completely
prime filters.

11



How did we get here?

In principle, this result could have been discovered much sooner — and yet it wasn’t.

The reason seems to be that the result belongs to the point-free perspective in an
essential way:

• The language of formal balls reflect the localic perspective that it is the opens that
are the basic units for defining a space, not the underlying set of points.

• A topos can be regarded as a generalised space whose points are models of a
geometric theory. In particular, if the theory of multiplicative seminorms is
essentially propositional, then we know the models also correspond to completely
prime filters.

11



The View from Topos Theory



On Logic & Topology

” Model theory rarely deals directly with topology; the
great exception is the theory of o-minimal structures,
where the topology arises naturally from an ordered
structure.

— E. Hrushovski and F. Loeser [HL16]

” While geometric logic can be treated as just another
logic, it is an unusual one. [...] To put it another way,
the geometric mathematics has an intrinsic continuity.

— S. Vickers [Vic14]
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What is a space?

Point-set Topology
• Point = An element of a set

• Space = A set of points, along with a collection of opens satisfying specific
properties (“topology”).

Point-free Topology
• Point = A model of a geometric theory

• Space = The ‘World’ in which all models of the theory live (≈ a topos)
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Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

• Formula: Let x⃗ be a finite vector of variables, each with a given sort. A geometric
formula in context x⃗ is a formula built up using symbols from Σ via the following
logical connectives: =, ⊤ (true), ∧ (finite conjunction),

∨
(arbitrary disjunction), ∃.

• Theory: A geometric theory over Σ is a set of axioms of the form

∀x⃗.(ϕ→ ψ),

where ϕ and ψ are geometric formulae.

Differences with classical logic
• Absence of negation ¬
• Allows for arbitrary (possibly infinite) disjunction
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Link with Topology

Special case: Propositional Theory
Suppose Σ is just a set of propositional symbols (in particular, no sorts).

• Geometric formulae are constructed from these symbols using ⊤, ∧,
∨

.

• A geometric theory over Σ is a set of axioms of the form ϕ→ ψ.

Localic Space
Recall the following perspective from point-free topology.

• Point = A model of a geometric theory

• Space = The ‘World’ in which all models of the theory live

If the geometric theory is propositional, we call the corresponding space a
localic space.
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Example: Localic Reals

From a logical POV, what are Dedekind reals?

Classical (finitary) logic: Dedekind cuts arise as types over the rationals (Q,<)
considered as a dense linear order.

Geometric logic: Dedekind reals arise as models of a geometric theory.
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Geometric Theory of Reals

The propositional theory TR with propositional symbols Pq,r (with q, r ∈ Q, the rationals)
and the axioms:

• Pq,r ∧ Pq′,r′ ←→
∨
{Ps,t|max(q, q′) < s < t < min(r, r′)}

• ⊤ −→
∨
{Pq−ϵ,q+ϵ|q ∈ Q} for any 0 < ϵ ∈ Q.

17



Types and Models as Filters

Question: Given a point x ∈ X in some space X , how does the family of open
neighbourhoods containing x look like from its POV?
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Types and Models as Filters

Question: Given a point x ∈ X in some space X , how does the family of open
neighbourhoods containing x look like from its POV?

Filter
For I an infinite set, F ⊂ P(I) is a filter on I when:

(i) A ⊆ B ⊆ I and A ∈ F implies B ∈ F .

(ii) A, B ∈ F implies A ∩ B ∈ F
(iii) I ∈ F .
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Types and Models as Filters

Question: Given a point x ∈ X in some space X , how does the family of open
neighbourhoods containing x look like from its POV?

Type: A partial type p over a model M corresponds to a filter on M for the Boolean
algebra of M-definable subsets of M. If p is an ultrafilter, then we call p a
(complete) type.

Model of (Geometric) Propositional Theory: A propositional theory T can be
associated to its lattice LT of propositional formulae (modulo provable equality).
The models of T are the completely prime filters of LT.
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The Upper Reals

Question: What about prime filters which are not ultrafilters?

Theory of Upper Reals
Consider a subset R ⊂ Q. For suggestiveness, write “R < r” whenever r ∈ R.
Suppose R is subject to the axiom:

∀r ∈ Q.
(
R < r ←→ ∃r′ ∈ Q.(R < r′) ∧ (r′ < r)

)
Remark: Morally speaking, an upper real R corresponds to the right Dedekind section
of a real. More precisely, upper reals are classically equivalent the the usual Dedekind
reals, but intuitionistically they are different.
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The Upper Reals

Question: What about prime filters which are not ultrafilters?

Theory of Upper Reals
Consider a subset R ⊂ Q. For suggestiveness, write “R < r” whenever r ∈ R.
Suppose R is subject to the axiom:

∀r ∈ Q.
(
R < r ←→ ∃r′ ∈ Q.(R < r′) ∧ (r′ < r)

)
Remark: Morally speaking, an upper real R corresponds to the right Dedekind section
of a real. More precisely, upper reals are classically equivalent the the usual Dedekind
reals2, but intuitionistically they are different.

2At least, once we ignore the infinities.
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The Abstract vs. The Concrete

” Category Theory is directed at the removal of the
importance of a concrete construction. It provides a
language to compare different concrecte constructions
and in addition provides a very new way to
construct objects [...] On the other hand, Model
theory is concentrated on the gap between an abstract
definition and a concrete construction.

— David Kazhdan [Kaz06]
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The Abstract vs. The Concrete

Point-free space = The ‘World’ in which all models of the theory live (≈ a topos)

Given a theory T over signature Σ, what are its models really?

Model Theory. A set M, equipped with interpretations of symbols in Σ. E.g. for
an n-ary relation R ∈ Σ, the model defines a subset

RM ⊆ MnR .

Topos Theory. An object in a category (with formal properties similar to Set),
also equipped with interpretations of Σ. E.g. for an n-ary relation R on sorts
A1 × · · · × Am, a model defines a subobject

[[R]]M ↣ [[A1]]M × · · · × [[Am]]M

21
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The Abstract vs. The Concrete

Point-free space = The ‘World’ in which all models of the theory live (≈ a topos)

Given a theory T over signature Σ, what are its models really?

Model Theory. Models come from sets.

Topos Theory. Models come from the category Set, but also other categories
capable of interpreting logic . . .

necessary to consider a wider range of models,
because geometric logic is incomplete (unlike classical logic).

22
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The Generic Model

In topos theory, we have access to a T-model that generally does not live in Set:

Key Theorem
Given any geometric theory T, there exists a generic model GT from which all
other T-models can be obtained. It is generic in that it has no other properties
other than the logical consequences of its being a model.
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The Generic Model

In topos theory, we have access to a T-model that generally does not live in Set:

Key Theorem
Given any geometric theory T, there exists a generic model GT from which all
other T-models can be obtained. In particular:

• GT is conservative, i.e. for any geometric sequent σ

∀x⃗.(ϕ −→ ψ),

σ holds for GT iff σ holds for any T-model.

• Any geometric construction (= built out of arbitrary colimits and finite
limits) can be carried out for any specific T-model.
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Continuous Maps in Point-free Topology

Here’s how we can use the generic model:

• Let T and T′ be two geometric theories. Denote [T] and [T′] to be their
corresponding spaces of models.

• We know there exists a generic model GT ∈ [T].
• Suppose we are able to transform GT into a model of T′ geometrically (= using

finite limits & arbitrary colimits), which we denote f (GT). Notice: if f (GT) is a T′

model, then f (GT) ∈ [T′].
• The same construction f (−) extends to all other T-models, and so what we have

done is define a map

f : [T] −→ [T′]

GT 7−→ f (GT)

where GT plays the role of the formal parameter.
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done is define a map

f : [T] −→ [T′]

GT 7−→ f (GT)

where GT plays the role of the formal parameter.
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Continuous Maps in Point-free Topology

Here’s how we can use the generic model:

Example
Let TR be the theory of Dedekind reals, and denote R to be the space of reals,
and x ∈ R to be the generic real. We can define:

f : R −→ R

x 7−→ x2

Notice: No explicit continuity proof of this map is required – as long as we adhere to
geometric constraints, we forgo the ability to define discontinuous maps. For a more
detailed discussion, see [Vic22].
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Bird’s Eye View

Point-Set Topology Point-free Topology
Point Element of a set Model of a theory T
Space Set + Topology Universe of all T-models

Continuous Maps f : X → Y s.t. Geom. transformation
f−1(U) open, for all open U of generic model GT

25



Adelic Geometry via Topos Theory



Divide and Conquer

Xn + Y n + Zn = 0 (n > 2)

• Question: What are the rational (equiv. integer) solutions to this polynomial? —
hard!

• Observation #1: Integer solutions imply real and modulo p solutions (in fact
p-adic solutions).

• Observation #2: Real and p-adic solutions are easier to deal with than just
integer/rational solutions.

• New Question: Given a polynomial with Q-coefficients, when does knowledge
about its Qp and R-solutions give us info about its Q-solutions?
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Hasse’s Local-Global Principle

Local-Global Principle for Q
Some property P is true for Q iff P is true for all the completions of Q.

Question: When does this principle hold? — sometimes.

Hasse-Minkowski Theorem: Quadratic forms3 have Q-solutions iff they have
solutions over all completions of Q.

Counter-Examples:

• Lind-Reichardt: 2Y 2 = X4 − 17Z4

• Selmer: 3X3 + 4Y 3 + 5Z3 = 0

3 i.e. homogeneous polynomials of degree 2
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Hasse’s Local-Global Principle

Local-Global Principle for Q
Some property P is true for Q iff P is true for all the completions of Q.

Still, it would be helpful to find a way of reasoning about properties that hold for all
completions of Q.

Classical Number Theory: Reason about completions via the adele ring

AQ := Q⊗Z

R×
∏
p

Zp



Point-Free Topology: Does there exist a geometric theory of completions of Q? If
yes, then there exists a generic completion which we can reason with.
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Yet more foundational issues . . .

When we say a property holds for all completions of Q, we really mean true for all
(non-trivial) completions of Q up to topological equivalence.

Places
A place is an equivalence class of absolute values whereby | · |1 ∼ | · |2 if there
exists some α ∈ (0, 1] such that | · |1 = | · |α2 or | · |2 = | · |α1 .

In particular, if | · |1, | · |2 belong to the same place, then their respective completions of
Q are equivalent.

29



Yet more foundational issues . . .

When we say a property holds for all completions of Q, we really mean true for all
(non-trivial) completions of Q up to topological equivalence.

Places
A place is an equivalence class of absolute values whereby | · |1 ∼ | · |2 if there
exists some α ∈ (0, 1] such that | · |1 = | · |α2 or | · |2 = | · |α1 .

In particular, if | · |1, | · |2 belong to the same place, then their respective completions of
Q are equivalent.

29



Yet more foundational issues . . .

Question: How should we think of the space of places of Q?

Ostrowski’s Theorem for Q
Every absolute value of Q is equivalent to a (non-Archimedean) p-adic absolute
value | · |p (for some prime p), or the Archimedean absolute value | · |∞.

Classical Arakelov Geometry. Following the function field analogy, define the
Arakelov compactification of Spec(Z) as the space of all primes with an additional
point at infinity, corresponding to the Archimedean place. As a (point-set) space, its
points comprises:

• Prime ideals p ∈ Spec(Z), whereby p = (p).
• ∞ ?????
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The Point-free Perspective

Let’s rework this question via point-free topology.

As long as we are careful to work geometrically, then our point-free spaces will
maintain a tight connection with the more category-theoretic aspects from topos
theory. This puts at our disposal a deep collection of structure theorems, such as
descent, that allows us to extract topological information from our logical setup.
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The Space of Places of Q

Intuitively, what should this space look like?

Its points should correspond to equivalence classes of absolute values, such that:

1. | · |α ∼ | · |

for any absolute value | · |, and α ∈ (0, 1].

Phrased more categeorically, we can define the space of places as the coequaliser of
the diagram

[av]× (0, 1] [av]
ex

π

• [av] is the space of absolute values of Q
• π is the projection map sending (| · |,α) 7→ | · |
• ex is the exponentiation map sending (| · |,α) 7→ | · |α
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The Space of Places of Q

Intuitively, what should this space look like?

Its points should correspond to equivalence classes of absolute values, such that:

1. | · |α ∼ | · |
2. | · |1 = | · |
3. (| · |α)β = | · |α·β .

for any absolute value | · |, and α ∈ (0, 1].

In essence, we would like to ‘quotient’ the topos [av] by an algebraic action – two
questions:

• Is the notion of (real) exponentiation geometric? Ng-Vickers [NV22]
• What does it mean to quotient a (point-free) space by an algebraic action?
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Non-Archimedean Place of Q

[avNA]× (0,∞) [avNA] D

ex

π

s

• For any non-Arch. absolute | · |, exponentiating | · |α still yields a non-Arch.
absolute value for any α ∈ (0,∞).

• What is D?

Theorem (N.-Vickers)
D ≃ {∗}
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Archimedean Place

[avA]× (0, 1] [avA] D′

m

π

s

• Space of Arch. absolute values is acted upon by a monoid (0, 1]-action as
opposed to a group (0,∞)-action.

• Can we play the same game as we did in the Non-Archimedean case? Answer: No!
(The topos corresponding to D′ has non-trivial forking in its sheaves)

• So what is D′?
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Archimedean Place

Theorem (N.-Vickers)
D′ ≃

←−−
[0, 1], i.e. the space of ‘upper reals’ between 0 and 1.
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Discussion: Beauty & Danger of Analogies

“One weakness in the analogy between the collection of {Ks}s∈S for a compact
Riemann surface S and the collection {Qp, for prime numbers p, and R} is that
[...] no manner of squinting seems to be able to make R the least bit mistakeable
for any of the p-adic fields, nor are the p-adic fields Qp isomorphic for distinct p.

A major theme in the development of Number Theory has been to try to
bring R somewhat more into line with the p-adic fields; a major mystery is
why R resists this attempt so strenuously.”

— Barry Mazur [Maz93]
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Discussion: Connected & Disconnected

Reorienting our perspective
The issue of how to unite the Archimedean and the non-Archimedean settings is
not (just) an algebraic question, but a topological one: how should the
connected and the disconnected interact?
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Proof of Theorem

Lax Descent Construction. Consider a 2-truncated simplicial topos E•:

E2 E1 E0

d̂2

d̂1

d̂0

d1

d0

s0

We can obtain a category LDesc(E•) as the coinserter for the diagram (subject to the
usual descent conditions). Its objects are pairs (F , θ), where:

• F is a sheaf of E0

• θ : d∗0F → d∗1 F is a morphism in E1 satisfying the unit and cocycle conditions.

Important: Unlike the standard descent topos, no requirement that θ is isomorphism!
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Proof of Theorem

Methodological challenge
The descent construction very much regards the topos as a category of objects,
rather than a generalised space of models. To reformulate this in the point-free
language, we decided to regard the sheaves as étale bundles, which keeps the
connection with the point-free perspective.
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Proof of Theorem

To prove the theorem, the basic plan of attack is to construct two functors

J : D′ S
←−−
[0, 1] : K

where D′ is the lax descent topos, and prove that they are inverse. The mathematical
devil lies in the details.

• K is induced by the fact that there exists a natural map from Dedekinds to upper
reals defined by forgetting the left Dedekind section.

• J is trickier, and involved constructing a technical lifting lemma, and showing that
sheaves over (0, 1] restricted to the rationals Q(0,1] (that obey the lax descent
conditions) also satisfy the conditions of the lemma.
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By way of conclusion

The main thread guiding us was a foundational question on the role of set theory in
topology, and its broader effects on the foundations on other areas of mathematics.

1) Berkovich Geometry: As stated, Berkovich’s Classification theorem for
K{R−1T} fails for trivially valued K due to essentially point-set reasons.

2) Arithmetic Geometry: Classically, the Archimedean place of Q is treated as a
singleton because of the point-set assumption that points correspond to elements
of a set.

In different ways, we used the point-free perspective to pull these problems away from
the underlying set theory. Both results indicate a particular loss of information within
the classical setting, while also revealing a deep nerve connecting topology & algebra
that had previously been obscured.
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